Complex Geometry: An Introduction (Universitext)

$69.61
by Daniel Huybrechts

Shop Now
Complex geometry studies (compact) complex manifolds. It discusses algebraic as well as metric aspects. The subject is on the crossroad of algebraic and differential geometry. Recent developments in string theory have made it an highly attractive area, both for mathematicians and theoretical physicists. The author’s goal is to provide an easily accessible introduction to the subject. The book contains detailed accounts of the basic concepts and the many exercises illustrate the theory. Appendices to various chapters allow an outlook to recent research directions. Daniel Huybrechts is currently Professor of Mathematics at the University Denis Diderot in Paris. From the reviews: "The book under review provides an introduction to the contemporary theory of compact complex manifolds, with a particular emphasis on Kähler manifolds in their various aspects and applications. As the author points out in the preface, the text is based on a two-semester course taught in 2001/2002 at the University of Cologne, Germany. Having been designed for third-year students, the aim of the course was to acquaint beginners in the field with some basic concepts, fundamental techniques, and important results in the theory of compact complex manifolds, without being neither too basic nor too sketchy. Also, as complex geometry has undergone tremendous developments during the past five decades, and become an indispensable framework in modern mathematical physics, the author has tried to teach the subject in such a way that would enable the students to understand the more recent developments in the field, too, up to some of the fascinating aspects of the stunning interplay between complex geometry and quantum field theory in theoretical physics. The present text, as an outgrowth of this special course in complex geometry, does evidently reflect these emphatic intentions of the author's in a masterly manner. Keeping the prerequisites from complex analysis and differential geometry to an absolute minimum, he provides a streamlined introduction to the theory of compact complex manifolds and Kählerian geometry, with many outlooks and applications, but without trying to be encyclopedic or panoramic. without trying to be encyclopedic or panoramic. As to the precise contents, the text consists of six chapters and two appendices. [...] The author has added two general appendices at the end of the book. Those are meant to help the unexperienced reader to recall a few basic concepts and facts from differential geometry, Hodge theory on differentiable manifolds, sheaf theory, and sheaf cohomology. This very user-friendly service makesthe entire introductory text more comfortable for less seasoned students, perhaps also for interested and mathematically less experienced physicists, although the author does not claim absolute self-containedness of the book. The entire text comes with a wealth of enlightening examples, historical remarks, comments and hints for further reading, outlooks to other directions of research, and numerous exercises after each section. The exercises are far from being bland and often quite demanding, but they should be mastered by ambitious and attentive readers, in the last resort after additional reading. Finally, there is a very rich bibliography of 118 references, also from the very recent research literature, which the author profusely refers to throughout the entire text. The whole exposition captivates by its clarity, profundity, versality, and didactical strategy, which lead the reader right to the more advanced literature in complex geometry as well as to the forefront of research in geometry and its applications to mathematical physics. No doubt, this book is an outstanding introduction to modern complex geometry." KIeinert (Berlin), Zentralblatt für Mathematik 1055 (2005) This is a very interesting and nice book. It provides a clear and deep introduction about complex geometry, namely the study of complex manifolds. These are differentiable manifolds endowed with the additional datum of a complex structure that is more rigid than the geometrical structures used in differential geometry. Complex geometry is on the crossroad of algebraic and differential geometry. Complex geometry is also becoming a stimulating and useful tool for theoretical physicists working in string theory and conformal field theory. The physicist, will be very glad to discover the interplay between complex geometry and supersymmetry and mirror symmetry. The book begins by explaining the local theory and all you need to understand theglobal structure of complex manifolds. Then we get an introduction to the complex manifolds as such, where the reader can progressively perceive the difference between real manifolds and complex ones. Then he gets an account of the theory of Kälher manifolds. And the physicist will be glad to find therein a first step on the road going from complex geometry to conformal field theory and supersymmetry. One chapter

Customer Reviews

No ratings. Be the first to rate

 customer ratings


How are ratings calculated?
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzes reviews to verify trustworthiness.

Review This Product

Share your thoughts with other customers