Wave Propagation and Time Reversal in Randomly Layered Media (Stochastic Modelling and Applied Probability, 56)

$54.04
by Jean-Pierre Fouque

Shop Now
Our motivation for writing this book is twofold: First, the theory of waves propagating in randomly layered media has been studied extensively during the last thirty years but the results are scattered in many di?erent papers. This theory is now in a mature state, especially in the very interesting regime of separation of scales as introduced by G. Papanicolaou and his coauthors and described in [8], which is a building block for this book. Second, we were motivatedbythe time-reversalexperimentsofM. Finkandhis groupinParis. They were done with ultrasonic waves and have attracted considerable att- tion because of the surprising e?ects of enhanced spatial focusing and time compression in random media. An exposition of this work and its appli- tions is presented in [56]. Time reversal experiments were also carried out with sonar arrays in shallow water by W. Kuperman [113] and his group in San Diego. The enhanced spatial focusing and time compression of signals in time reversal in randommedia have many diverse applications in detection and in focused energy delivery on small targets as, for example, in the - struction of kidney stones. Enhanced spatial focusing is also useful in sonar and wireless communications for reducing interference. Time reversal ideas have played an important role in the development of new methods for array imaging in random media as presented in [19]. From the reviews: "An up-to-date monograph written by highly regarded experts that presents in a modern way the generalities of the physics of randomly layered media and covers a broad range of applications has long been eagerly anticipated by mathematicians, physicists, and engineers. … I strongly recommend the book to graduate students and advanced researchers … . this is an excellent book which will be interesting, informative, and enjoyable for a wide circle of students, researchers, and engineers, demanding a place on their bookshelves." (Valentin Freilikher, Journal of Statistical Physics, Vol. 131, 2008) "This excellent monograph … provides a masterful presentation of wave propagation in one-dimensional (layered) random media. … This book serve as an indispensable reference to any mathematician and scientist interested in the analysis of partial differential equations with random coefficients." (Guillaume Bal, Mathematical Reviews, Issue 2009 a) "This book focuses … entirely on the case of classical, linear waves (e.g., acoustics) in randomly layered media. … I recommend this book highly to anyone interested in wave propagation in random media, or just asymptotic methods for stochastic differential equations. … this narrower focus provides necessary clarity to the mathematical presentation. … this book does an admirable job of presenting mathematicians with the fundamental analytical tools needed to study this subject." (Arnold D. Kim, SIAM Review, Vol. 51 (3), 2009) Wave propagation in random media is an interdisciplinary field that has emerged from the need in physics and engineering to model and analyze wave energy transport in complex environments. This book gives a systematic and self-contained presentation of wave propagation in randomly layered media using the asymptotic theory of ordinary differential equations with random coefficients. The first half of the book gives a detailed treatment of wave reflection and transmission in one-dimensional random media, after introducing gradually the tools from partial differential equations and probability theory that are needed for the analysis. The second half of the book presents wave propagation in three-dimensional randomly layered media along with several applications, primarily involving time reversal. Many new results are presented here for the first time. The book is addressed to students and researchers in applied mathematics that are interested in understanding how tools from stochastic analysis can be used to study some intriguing phenomena in wave propagation in random media. Parts of the book can be used for courses in which random media and related homogenization, averaging, and diffusion approximation methods are involved.

Customer Reviews

No ratings. Be the first to rate

 customer ratings


How are ratings calculated?
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzes reviews to verify trustworthiness.

Review This Product

Share your thoughts with other customers